The MPLAB® ICD 5 is designed to build on the strengths of our mid-range debugger and offers instrumented trace (ARM SWO) capabilities, along with additional features typically found only in higher-priced products. With support for all PIC®, dsPIC®, SAM, and AVR® devices, our latest product provides comprehensive support for a wide range of devices.

Key Features:

  • Ease of connection to PC using USB Type-C cable interface
  • Fast Ethernet with PoE+ provides greater flexibility and convenience to power up the tool
  • High-Speed USB 2.0 interface
  • Ethernet connectivity for programming and debugging enables remote development
  • Power Monitoring with Data Visualizer allows for optimizing the
    power consumption of a design
  • Instrumented Trace (ARM SWO) capabilities

Win an MPLAB ICD 5 In-Circuit Debugger/Programmer!

Register below for your chance to win one of these boards. Click Here for terms and conditions.

Highlights

  • Using high-precision architectures enables superior DC performance, regardless of operating conditions
  • Low noise and additional EMI filtering on the inputs provide additional protection in electrically noisy environments
  • Small packages, such as leadless DFNs, are ideal for space-constrained designs
  • A wide operating temperature range of –40°C to +125°C provides a robust solution even at extreme temperatures

Data Converters

Subtitle

Overcome signal-chain design challenges and speed your products to market with our broad portfolio of proven, easy-to-use data conversion solutions.

Data Converters

Subtitle

Overcome signal-chain design challenges and speed your products to market with our broad portfolio of proven, easy-to-use data conversion solutions.

Data Converters

Subtitle

Overcome signal-chain design challenges and speed your products to market with our broad portfolio of proven, easy-to-use data conversion solutions.

Data Converters

Subtitle

Overcome signal-chain design challenges and speed your products to market with our broad portfolio of proven, easy-to-use data conversion solutions.



Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.



Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.




Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.



Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.




Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.



Week 1: COTS Rad-Tolerant to Rad-Hardened Microprocessors and Microcontrollers Scalable Solutions

Tuesday 18th May, 16:00pm CET | Presenter: Nicolas Ganry

Presentation of the COTS rad-tolerant concept applied to microcontrollers and the unique ARM M7 SoC scalable solution to rad-hard devices. This COTS based approach benefits from a widely deployed software & hardware ecosystem enabling a wide range of space applications.


Microchip Instrumentation Amplifier with mCAL Technology

The MCP6N11 and MCP6V2x Wheatstone Bridge Reference Design demonstrates the performance of Microchip's MCP6N11 instrumentation amplifier (INA) and a traditional three op amp INA using Microchip's MCP6V26 and MCP6V27 auto-zeroed op amps. The input signal comes from an RTD temperature sensor in a Wheatstone bridge. Real world interference is added to the bridge's output, to provide realistic performance comparisons. Data is gathered and displayed on a PC, for ease of use. The USB PIC® microcontroller and included Graphical User Interface (GUI) provides the means to configure the board and collect sample data.

Our Instrumentation Amplifiers (INAs) include internal matched feedback and are ideal for data acquisition applications. Their ability to accurately extract a small signal in the presence of a large common mode makes these INAs ideal for sensor amplification. Electromagnetic Interference (EMI) filtering on select devices maintains excellent performance in the most demanding environments.

Instrumentation Amplifiers