PIC64-HPSC Series

PIC64-HPSC1000 and PIC64-HPSC1100

Summary

The PIC64-HPSC (High-Performance Spaceflight Computing) series of 64-bit microprocessors (MPUs) represents a revolutionary step forward in radiationhardened and radiation-tolerant processors. Offering a 100× improvement in processing capability compared to traditional space processors and bringing new capabilities to space such as virtualization, AI, TSN Ethernet, RDMA over Converged Ethernet v2, PCIe[®], Compute Express Link[®] (CXL[®]) 2.0 and post-quantum cryptography, PIC64-HPSC redefines what is possible for the future of space exploration and space processing. The PIC64-HPSC1000 and PIC64-HPSC1100 family includes multiple device versions in the same hardware and software footprint to meet mission profiles ranging from Low Earth Orbit (LEO) to Deep Space.

A complete package of tools, libraries, drivers and boot firmware is available to unlock the full capabilities of HPSC while accelerating your time to market. Multiple open source, commercial and real-time operating systems are supported including Linux[®] and RTEMS, as well as hypervisors such as Xen. HPSC leverages and builds upon Microchip's Mi-V ecosystem for RISC-V[®].

Application Compute Complex With Real-Time Support

The PIC64-HPSC1000 and PIC64-HPSC1100 family provides multicore 64-bit RISC-V processing. Highlights of the Application Compute Complex include:

- Eight 64-bit RISC-V CPU cores (SiFive Intelligence[™] X280) with vector extensions
- Up to 1 GHz operation
- Optional Dual-Core Lockstep (DCLS)
- Multiple operating modes: Unified, Split and Cache-Isolated
- Enhanced support for real-time applications
- Decoupled vector pipeline supporting 512-bit vector lengths that enable AI/ML
- Support for virtualization and both Type 1 and Type 2 hypervisor usage (MMU and IOMMU with two-stage translation)
- 26K DMIPS (CoreMark[®] score of 46K) for scalar performance and up to 2 TOPS (int8) or 1 TFLOPS (bfloat16) for vector matrix multiplication (all eight cores)

WorldGuard End-to-End Partitioning Architecture

WorldGuard provides hardware-based spatial partitioning of the entire device including core, cache, interconnect, peripherals and memory with support for up to 32 domains. WorldGuard facilitates integration and isolation of mixedcriticality workloads.

Integrated System Controller

The onboard System Controller is an additional 64-bit RISC-V CPU core (SiFive S7) operating at 500 MHz. The system controller enables mission-critical and autonomous systems with runtime monitoring and fault management. Attached to the system controller are the following dedicated and shared peripherals:

- Two SPI/QSPI
- 2x NOR Flash/SRAM (shared)
- One I²C, one UART and 32 GPIO (shared)
- One SpaceWire (emergency mode only)

TSN Ethernet Switch

PIC64-HPSC1000 and PIC64-HPSC1100 family integrates 240 Gbps of Ethernet switching with full TSN support aligned to P802.1DP (aerospace profile):

- Up to 160 Gbps of switching from up to 16 external facing ports
- Up to 80 Gbps of Direct Memory Access (DMA) for packet insertion and extraction from internal subsystems, including the Application Compute Complex
- 16 external-facing ports for Ethernet rates from 10M to 10G
- Remote Direct Memory Access (RDMA) with RDMA over Converged Ethernet (RoCEv2) for low-latency transfers from remote sensors and extensibility

Memory Interfaces

- Two DDR interfaces supporting DDR3-2133 or DDR4-3200
- 72-bit interface with ECC for single-bit error correction
- Optional 80-bit interface composed of x8 memory devices for multi-bit error correction and memory chip failure protection
- Up to 32 GB per DDR interface

Nonvolatile Memory and SRAM

- Parallel NAND Flash, NOR Flash and SRAM
- NAND and NOR SPI Flash
- MRAM with SPI or parallel interface

Co-Processor/Accelerator Interfaces

- Up to two PCIe Gen 3 ×8 ports or four PCIe Gen 3 ×4 ports through bifurcation
- Support for CXL 2.0 (at 8 GT/s) host operation for cachecoherent interconnect to CXL Type 2 devices such as FPGAs, GPUs or coprocessors

SpaceWire Interfaces

- Seven RMAP-compatible SpaceWire ports with internal routers
- One SpaceWire port for emergency access
- Support for rates from 10 Mbps to 200 Mbps

Product Table

Peripheral Interfaces

- Up to four TSN Ethernet endpoint ports supporting rates from 10M to 10G
- Two SPI, four UART, four I²C, 64 GPIO, two MDIO, JTAG host, timers and watchdogs

Defense-in-Depth Security

- Cryptographically controlled supply chain and device manufacturing flow that ensures authenticity
- Dedicated secure enclave to support secure boot and platform root of trust
- Full support for post-quantum cryptography: ML-KEM and ML-DSA
- User/application-level security acceleration
- Extensive anti-tamper detection and response capabilities

PIC64-HPSC Block Diagram

	PIC64-HPSC1000-RH	PIC64-HPSC1100-RT	PIC64-HPSC1000-EM/ PIC64-HPSC1100-EM
Product Class	Radiation Hardened	Radiation Tolerant	Engineering Model
Application	MEO, GEO, Deep Space	LEO	Lab Development
Qualification Level	QML-Y	JEDEC JESD47	JEDEC JESD47
TID	100 krad (test to 200 krad)	50 krad	Not Applicable
SEL	78 MeV	42 MeV	Not Applicable
Operating Temperature	–55°C (Ta) to +125°C (Tj)	–55°C (Ta) to +125°C (Tj)	0°C (Ta) to +70°C (Tj)

Contact Microchip for the fully qualified part number.

